
Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

COP 3344 Introduction to UNIX 
Lecture 
 

 
Session: Makefiles 
Topic: Program Translation 

Makefiles 
 
Daniel Chang 
 
 



Copyright August 2006, Daniel Chang 
COP 3344 Introduction to UNIX 

Program Translation 
 
High-level programming languages (e.g. C, C++, C#) start as 
"Source Code" 
 

int i; 
for (i = 0; i < 2; i++) 
{ 
  printf("The number is %i\n", i); 
} 

 
• "Source Code" is language for programmers, but machines 

only read "Machine Language" (details later) 
• So Source Code must be "compiled" (translated) into 

Machine Language before being readable by the computer 
• Shell scripts are actually "interpreted" on the fly, rather than 

precompiled 
 
 
 
 
 
 
 
The Source Code is "compiled" in order to "make" the Machine 
Language file 

• The Machine Language file is "made" 
• If the Machine Language file is a complete program that can 

be run, it is called a "executable" file 
• If the Machine Language file is not complete and is to be 

combined with other files it is called an "object" file 

Source Code 
int i; 
for (i = 0; i < 2; i++) 
{ 
  printf("The number is 
%i\n", i); 
} 
 

Machine Code 
(Machine Language) 
1000 0101 1001 1010 
1010 0100 0111 1101 
0101 1010 1111 0010 
0010 1001 0011 0110 

Compile 
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Makefiles 
• The "make" command is a utility program that reads 

instructions from a text file called a "Makefile" 
• The Makefile specifies instructions on how to build a high-

level programming project with multiple source code files 
• Often multiple source code files reference each other, so 

must be compiled in a certain order 
• Makefiles must be named "makefile" or "Makefile" and must 

exist in the directory where the project source code files exist 
(generally). 

 
 

• SourceFile2 "depends" on 
objects defined by 
SourceFile1 

 
 

• So SourceFile1 must be 
compiled first 

 
 

 
 
 

SourceFile1: 
 
(Defines "Print" function) 

 

SourceFile2: 
 
(Uses "Print" function) 
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Makefile Components 
 
Makefiles contain 

• Comments 
• Rules, consisting of 

o Dependency Lines, consisting of 
� Target 
� Dependency List 

o Commands (Shell Lines) 
• Macros 
• Inference Rules 
• (Other stuff) 

 
The "make" utility is obnoxiously picky (i.e. buggy) about the 
format of makefile contents 
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Comments 
• Comments are indicated by a "#" 
• All text from the "#" to the end of the line is ignored by the 

"make" utility 
• Comments can start anywhere 

 
Example 
 

# 
# this is a comment 
projecte.exe : main.obj io.obj  # more comment 
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Rules 
• Rules tell the "make" utility when and how to compile a 

source code file 
• A rule has a Dependency Line and a Command Line 

 
target : dependency list 

command 
 

• Rules must be separated from other rules by a blank line 
 
 
 

Dependency Line 
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Dependency Line 
• Dependency Lines indicate when a particular target file must 

be made 
 
Target 

• The "target" is usually the name of a machine language file 
that must be made as part of the project 

• The target must be separated from the dependency list by a 
colon (:) 

• The target name must start in the first column of the line (no 
leading white space) 

 
Dependency List 

• The "dependency list" is a list of files that must exist in order 
to make the target 

• The "make" utility checks the dates of the files in the 
dependency list and if they are newer than the target will re-
make the target 

• The files in the dependency list must be separated by 
spaces 

• The files in the dependency list must all be on the same line 
(no enters/returns) 

 
Example 
 
main.obj : part1.c part2.c main.h 

[some command goes here] 
 
Project.exe : main.obj io.obj 

[some command goes here] 
 

• If more than one target depends on the same dependency 
list, they can be placed before the (:) separated by spaces 
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Command Line 
• Command lines indicate how to make the target 
• Typically the command to the "compiler" needed to create 

the target from the dependency list files 
• May also specify some file maintenance like deleting old files 
• Command lines must be indented with a Tab 
• A rule may have more than one Command line, each on a 

separate line 
 
Example 

Project.exe : main.obj io.obj 
gcc -o Project.exe main.obj io.obj 

 
 
 
 

cleanbuild : prog.c lib.o 
gcc -o cleanbuild prog.c lib.o 
rm lib.o 

 
 
 

Command Line There is a <Tab> here! @$%*#! 
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Macros 
• A shorthand alias used in a makefile 
• Essentially a string (traditionally all capitals) is associated 

with another (usually larger) string 
• Macros are created using the format 

 
[MACRONAME] = [string to substitute] 

 
• Inside the makefile the macro string is expanded using the 

format 
 

$(string) 
 
Example 

PROJ = myprog.exe 
BIN = /usr/bin 
CPP = $(BIN)/g++ 
 
$(PROJ): proj.c proj.h 
 $(CPP) -o $(PROJ) proj.c proj.h -lm 
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Inference Rules 
• A wildcard (matching) notation for generalizing the make 

process 
• "%" is used to indicate a wildcard, and will match other "%" 

 
Example 

%.obj: %.c 
 $(CPP) -o $(PROJ) $(.SOURCE) 

 
• This indicates that all ".obj" files have dependencies with all 

".c" files with the same name (where the "%" are the same) 
• ".SOURCE" is a macro provided by the "make" utility which 

refers to the dependency inferred by the current inference 
rule (%) 

• ".TARGET" would refer to the current rule target 
 
 
 
 
 
 
 


