
Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

COP 3344 Introduction to UNIX
Lecture

Session: Makefiles
Topic: Program Translation

Makefiles

Daniel Chang

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Program Translation

High-level programming languages (e.g. C, C++, C#) start as
"Source Code"

int i;
for (i = 0; i < 2; i++)
{
 printf("The number is %i\n", i);
}

• "Source Code" is language for programmers, but machines

only read "Machine Language" (details later)
• So Source Code must be "compiled" (translated) into

Machine Language before being readable by the computer
• Shell scripts are actually "interpreted" on the fly, rather than

precompiled

The Source Code is "compiled" in order to "make" the Machine
Language file

• The Machine Language file is "made"
• If the Machine Language file is a complete program that can

be run, it is called a "executable" file
• If the Machine Language file is not complete and is to be

combined with other files it is called an "object" file

Source Code
int i;
for (i = 0; i < 2; i++)
{
 printf("The number is
%i\n", i);
}

Machine Code
(Machine Language)
1000 0101 1001 1010
1010 0100 0111 1101
0101 1010 1111 0010
0010 1001 0011 0110

Compile

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Makefiles
• The "make" command is a utility program that reads

instructions from a text file called a "Makefile"
• The Makefile specifies instructions on how to build a high-

level programming project with multiple source code files
• Often multiple source code files reference each other, so

must be compiled in a certain order
• Makefiles must be named "makefile" or "Makefile" and must

exist in the directory where the project source code files exist
(generally).

• SourceFile2 "depends" on
objects defined by
SourceFile1

• So SourceFile1 must be
compiled first

SourceFile1:

(Defines "Print" function)

SourceFile2:

(Uses "Print" function)

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Makefile Components

Makefiles contain

• Comments
• Rules, consisting of

o Dependency Lines, consisting of
� Target
� Dependency List

o Commands (Shell Lines)
• Macros
• Inference Rules
• (Other stuff)

The "make" utility is obnoxiously picky (i.e. buggy) about the
format of makefile contents

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Comments
• Comments are indicated by a "#"
• All text from the "#" to the end of the line is ignored by the

"make" utility
• Comments can start anywhere

Example

this is a comment
projecte.exe : main.obj io.obj # more comment

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Rules
• Rules tell the "make" utility when and how to compile a

source code file
• A rule has a Dependency Line and a Command Line

target : dependency list

command

• Rules must be separated from other rules by a blank line

Dependency Line

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Dependency Line
• Dependency Lines indicate when a particular target file must

be made

Target

• The "target" is usually the name of a machine language file
that must be made as part of the project

• The target must be separated from the dependency list by a
colon (:)

• The target name must start in the first column of the line (no
leading white space)

Dependency List

• The "dependency list" is a list of files that must exist in order
to make the target

• The "make" utility checks the dates of the files in the
dependency list and if they are newer than the target will re-
make the target

• The files in the dependency list must be separated by
spaces

• The files in the dependency list must all be on the same line
(no enters/returns)

Example

main.obj : part1.c part2.c main.h

[some command goes here]

Project.exe : main.obj io.obj

[some command goes here]

• If more than one target depends on the same dependency
list, they can be placed before the (:) separated by spaces

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Command Line
• Command lines indicate how to make the target
• Typically the command to the "compiler" needed to create

the target from the dependency list files
• May also specify some file maintenance like deleting old files
• Command lines must be indented with a Tab
• A rule may have more than one Command line, each on a

separate line

Example

Project.exe : main.obj io.obj
gcc -o Project.exe main.obj io.obj

cleanbuild : prog.c lib.o
gcc -o cleanbuild prog.c lib.o
rm lib.o

Command Line There is a <Tab> here! @$%*#!

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Macros
• A shorthand alias used in a makefile
• Essentially a string (traditionally all capitals) is associated

with another (usually larger) string
• Macros are created using the format

[MACRONAME] = [string to substitute]

• Inside the makefile the macro string is expanded using the

format

$(string)

Example

PROJ = myprog.exe
BIN = /usr/bin
CPP = $(BIN)/g++

$(PROJ): proj.c proj.h
 $(CPP) -o $(PROJ) proj.c proj.h -lm

Copyright August 2006, Daniel Chang
COP 3344 Introduction to UNIX

Inference Rules
• A wildcard (matching) notation for generalizing the make

process
• "%" is used to indicate a wildcard, and will match other "%"

Example

%.obj: %.c
 $(CPP) -o $(PROJ) $(.SOURCE)

• This indicates that all ".obj" files have dependencies with all

".c" files with the same name (where the "%" are the same)
• ".SOURCE" is a macro provided by the "make" utility which

refers to the dependency inferred by the current inference
rule (%)

• ".TARGET" would refer to the current rule target

